Math 118B Final Practice

Charles Martin

March 7, 2012

1. In the compact metric space X a sequence of functions (f_n) —not necessarily continuous—converge pointwise to a continuous function f. Prove that the convergence is uniform if and only if for any convergent sequence $x_n \to x$ in X we have

$$\lim_{n \to \infty} f_n(x_n) = f(x).$$

- 2. Prove that the series $\sum_{n=1}^{\infty} \sin^2 \left(2\pi \sqrt{n^2 + x^2} \right)$ converges uniformly on bounded intervals.
- 3. Prove that the series $\sum_{n=1}^{\infty} n^2 x^2 e^{-n^2|x|}$ converges uniformly on \mathbb{R} .

4. Determine the domain of convergence for $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{(-1)^n n^2} x^n$.

5. Suppose that $f, g: [0,1] \to \mathbb{R}$ are continuous. Prove there exists $c \in [0,1]$ so that

$$\int_0^1 f(x)g(x) \, dx = f(c) \int_0^1 g(x) \, dx.$$

6. Fix 0 < a < b and a continuous function $f : \mathbb{R} \to \mathbb{R}$. Evaluate

$$\lim_{\epsilon \to 0^+} \int_{a\epsilon}^{b\epsilon} \frac{f(x)}{x} \, dx.$$

7. Suppose that $f:[0,1] \to \mathbb{R}$ is continuous and $f \ge 0$. If

$$\int_0^1 f(x) \, dx = 0,$$

prove that f is identically 0.

8. Suppose that $f:[0,1] \to \mathbb{R}$ is continuous and that for each $n \ge 0$,

$$\int_0^1 x^n f(x) \, dx = 0.$$

Prove that f is identically 0.

- 9. Prove that $\int_0^\infty \sin(x^2) dx$ converges.
- 10. Evaluate the limits

(a)
$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n}$$

(b)
$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{k=1}^{n} (\ln k)^2 - \left(\frac{1}{n} \sum_{k=1}^{n} \ln k \right)^2 \right)$$

11. Define the Dirichlet function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \notin \mathbb{Q} \\ 1 & \text{if } x \in \mathbb{Q} \end{cases}$$

Prove the following:

- (a) The function f is discontinuous at every point.
- (b) The function f is not Riemann integrable on any bounded interval.
- 12. Define the Riemann ruler function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \notin \mathbb{Q} \\ 1/q & \text{if } x = p/q \text{ with } p, q \text{ relatively prime integers} \end{cases}$$

Prove the following:

- (a) The function f is continuous at the irrationals and continuous at the rationals.
- (b) The function f is Riemann integrable on every bounded interval.
- (c) For any a < b we have

$$\int_{a}^{b} f(x) \, dx = 0$$

13. A continuous function $K : [0,1] \times [0,1] \to \mathbb{R}$ satisfies |K(x,y)| < 1 for all $(x,y) \in [0,1] \times [0,1]$. Prove there is a unique continuous $f : \mathbb{R} \to \mathbb{R}$ so that

$$f(x) + \int_0^1 K(x, y) f(y) \, dy = e^x$$

14. Let (f_n) be a sequence of real-valued uniformly bounded equicontinuous functions on a metric space X. If we define

 $g_n(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\},\$

prove that the sequence (g_n) converges uniformly.

15. Suppose that K is a nonempty compact subset of a metric space X. Given $x \in X$ prove there exists a point $z \in K$ so that

$$d(x,z) = \operatorname{dist}(x,K)$$

- 16. Prove every compact metric space has a countable dense subset.
- 17. Evaluate $\lim_{n \to \infty} \int_0^1 \left(1 + \frac{x}{n}\right)^n dx$ with justification.
- 18. Show that

$$\frac{1}{1+x^2} - \frac{1}{2+x^2} + \frac{1}{3+x^2} - \cdots$$

converges uniformly \mathbb{R} but never absolutely.

- (a) Prove the polynomials of even degree are dense in the space of continuous functions C[0,1].
 (b) Is this still true on C[-1,1]?
- 20. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is integrable on every interval of the form [0, A] for A > 0 and that $f \to 1$ as $x \to \infty$. Prove that

$$\lim_{s \to 0^+} s \int_0^\infty e^{-st} f(t) \, dt = 1.$$

21. Define, for x, y > 1

$$f(x,y) = \frac{x-y}{1-xy}.$$

For each fixed y, note that $f(x, y) \to 1$ as $x \to 1$. Is the convergence uniform in y?

22. (a) Suppose that (a_{nk}) is a doubly-indexed series of positive terms. Prove that

$$\sum_{k} \sum_{n} a_{nk} = \sum_{n} \sum_{k} a_{nk},$$

where ∞ is allowed.

- (b) Give an example of a sequence for which the above equation fails.
- 23. Let $K: [0,1] \times [0,1] \to \mathbb{R}$ be continuous. Define $T: C[0,1] \to C[0,1]$ to be the linear operator

$$Tf(x) = \int_0^1 K(x, y) f(y) \, dy$$

Prove that T maps bounded subsets of C[0, 1] into precompact ones.

24. (a) Let f be a continuous periodic function with some period t. Show that its set of translates

$$\mathcal{F} = \{ f(x-t) : t \in \mathbb{R} \}$$

is compact in $C(\mathbb{R})$.

(b) A function is called almost periodic if its set of translates is precompact. Prove the set of almost periodic functions is a closed subalgebra of $C(\mathbb{R})$.