Math 118B Final Practice

Charles Martin

March 7, 2012

1. In the compact metric space X a sequence of functions $\left(f_{n}\right)$ —not necessarily continuous-converge pointwise to a continuous function f. Prove that the convergence is uniform if and only if for any convergent sequence $x_{n} \rightarrow x$ in X we have

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)
$$

2. Prove that the series $\sum_{n=1}^{\infty} \sin ^{2}\left(2 \pi \sqrt{n^{2}+x^{2}}\right)$ converges uniformly on bounded intervals.
3. Prove that the series $\sum_{n=1}^{\infty} n^{2} x^{2} e^{-n^{2}|x|}$ converges uniformly on \mathbb{R}.
4. Determine the domain of convergence for $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{(-1)^{n} n^{2}} x^{n}$.
5. Suppose that $f, g:[0,1] \rightarrow \mathbb{R}$ are continuous. Prove there exists $c \in[0,1]$ so that

$$
\int_{0}^{1} f(x) g(x) d x=f(c) \int_{0}^{1} g(x) d x
$$

6. Fix $0<a<b$ and a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$. Evaluate

$$
\lim _{\epsilon \rightarrow 0^{+}} \int_{a \epsilon}^{b \epsilon} \frac{f(x)}{x} d x
$$

7. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is continuous and $f \geq 0$. If

$$
\int_{0}^{1} f(x) d x=0
$$

prove that f is identically 0 .
8. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is continuous and that for each $n \geq 0$,

$$
\int_{0}^{1} x^{n} f(x) d x=0
$$

Prove that f is identically 0 .
9. Prove that $\int_{0}^{\infty} \sin \left(x^{2}\right) d x$ converges.
10. Evaluate the limits
(a) $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}$
(b) $\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{k=1}^{n}(\ln k)^{2}-\left(\frac{1}{n} \sum_{k=1}^{n} \ln k\right)^{2}\right)$
11. Define the Dirichlet function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}0 & \text { if } x \notin \mathbb{Q} \\ 1 & \text { if } x \in \mathbb{Q}\end{cases}
$$

Prove the following:
(a) The function f is discontinuous at every point.
(b) The function f is not Riemann integrable on any bounded interval.
12. Define the Riemann ruler function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}0 & \text { if } x \notin \mathbb{Q} \\ 1 / q & \text { if } x=p / q \text { with } p, q \text { relatively prime integers }\end{cases}
$$

Prove the following:
(a) The function f is continuous at the irrationals and continuous at the rationals.
(b) The function f is Riemann integrable on every bounded interval.
(c) For any $a<b$ we have

$$
\int_{a}^{b} f(x) d x=0
$$

13. A continuous function $K:[0,1] \times[0,1] \rightarrow \mathbb{R}$ satisfies $|K(x, y)|<1$ for all $(x, y) \in[0,1] \times[0,1]$. Prove there is a unique continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ so that

$$
f(x)+\int_{0}^{1} K(x, y) f(y) d y=e^{x}
$$

14. Let $\left(f_{n}\right)$ be a sequence of real-valued uniformly bounded equicontinuous functions on a metric space X. If we define

$$
g_{n}(x)=\max \left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}
$$

prove that the sequence $\left(g_{n}\right)$ converges uniformly.
15. Suppose that K is a nonempty compact subset of a metric space X. Given $x \in X$ prove there exists a point $z \in K$ so that

$$
d(x, z)=\operatorname{dist}(x, K)
$$

16. Prove every compact metric space has a countable dense subset.
17. Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{1}\left(1+\frac{x}{n}\right)^{n} d x$ with justification.
18. Show that

$$
\frac{1}{1+x^{2}}-\frac{1}{2+x^{2}}+\frac{1}{3+x^{2}}-\cdots
$$

converges uniformly \mathbb{R} but never absolutely.
19. (a) Prove the polynomials of even degree are dense in the space of continuous functions $C[0,1]$.
(b) Is this still true on $C[-1,1]$?
20. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is integrable on every interval of the form $[0, A]$ for $A>0$ and that $f \rightarrow 1$ as $x \rightarrow \infty$. Prove that

$$
\lim _{s \rightarrow 0^{+}} s \int_{0}^{\infty} e^{-s t} f(t) d t=1
$$

21. Define, for $x, y>1$

$$
f(x, y)=\frac{x-y}{1-x y}
$$

For each fixed y, note that $f(x, y) \rightarrow 1$ as $x \rightarrow 1$. Is the convergence uniform in y ?
22. (a) Suppose that $\left(a_{n k}\right)$ is a doubly-indexed series of positive terms. Prove that

$$
\sum_{k} \sum_{n} a_{n k}=\sum_{n} \sum_{k} a_{n k}
$$

where ∞ is allowed.
(b) Give an example of a sequence for which the above equation fails.
23. Let $K:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be continuous. Define $T: C[0,1] \rightarrow C[0,1]$ to be the linear operator

$$
T f(x)=\int_{0}^{1} K(x, y) f(y) d y
$$

Prove that T maps bounded subsets of $C[0,1]$ into precompact ones.
24. (a) Let f be a continuous periodic function with some period t. Show that its set of translates

$$
\mathcal{F}=\{f(x-t): t \in \mathbb{R}\}
$$

is compact in $C(\mathbb{R})$.
(b) A function is called almost periodic if its set of translates is precompact. Prove the set of almost periodic functions is a closed subalgebra of $C(\mathbb{R})$.

